
For: karonis
Printed on: Tue, Nov 2, 1993 15:51:41

Document: String Resolution
Last saved on: Tue, Sep 28, 1993 10:30:53

1

A Methodology For String Resolution

Nicholas T. Karonis
November 1992

1 Introduction
In this paper we present a methodology, not a tool. We present this methodology with the
intent that it be adopted, on a case by case basis, by each of the existing tools in EPICS.

In presenting this methodology, we describe each of its two components in detail and con-
clude with an example depicting how the methodology can be used across a pair of tools.

2 Motivation
The task of any control system is to provide access to the various components of the machine
being controlled, for example, the Advanced Photon Source (APS). By access, we mean the
ability to monitor the machine’s status (reading) as well as the ability to explicitly change
its status (writing).

2.1 Importance of Names

The Experimental Physics and Industrial Control System (EPICS) is a set of tools, designed
to act in concert, that allows one to construct a control system. EPICS provides the ability
to construct a control system that allows reading and writing access to the machine. It does
this through the notion of databases.

Each of the components of the APS that is accessed by the control system is represented in
EPICS by a set of named database records. Once this abstraction is made, from physical de-
vice to named database records, the process of monitoring and changing the state of that de-
vice becomes the simple process of reading and writing information from and to its
associated named records.

Databases are the fundamental building blocks in EPICS. All the tools in EPICS are de-
signed to ultimately interact with the named records in the database. Named database re-
cords is a critical assumption that spans across all the tools in EPICS. It is the names of these
records, and nothing else, that permits the various tools in EPICS to function in harmony.
In other words, without the name of the database records, records that were created with one
tool would not be able to be referenced by another tool.

2.2 Redundancy in the APS

One of the characteristics of the APS is its redundancy with respect to its physical devices.
For example, the storage ring of the APS is composed of several sectors. The devices found
in each of the sectors are virtually identical. As a result, the structure of the databases that
control each of the sectors are also virtually identical. The major difference is only in the
names of the database records.

2

2.3 Characteristics of a Good Methodology

We have seen two characteristics in EPICS and the APS. The first is the assumption that all
database records are named, and it is that assumption that binds all the tools in EPICS. The
second is the redundant nature of the physical devices that compose the APS.

A good methodology must harness the unifying power found in the assumption of named
records as well as exploit the redundancy found in the APS. We believe this methodology
does both.

3 String Resolution
As a methodology, string resolution is not limited to database record names. It is a methodol-
ogy that can be applied to any set of strings. This broad application base proves to be essen-
tial when applying the methodology across all existing tools, and we believe will be most
helpful in adopting the methodology to future tools.

String resolution is composed of two phases, substitution and enumeration.

3.1 Substitution

Substitution is the process of transforming one string of characters into another.

Definition: Given a finite alphabet �, s is a string of �, or a string, if and only if s ∈ �*.

The transformation is guided by a user–supplied transformation function.

Definition: Given a finite alphabet �, function ƒ is a transformation function if and only if:
1) (string conversion) ƒ: �*

��* and
2) (grounding) ƒ(s) = ƒ(ƒ(s)).

Definition: Given a transformation function ƒ, a string s is grounded with respect to ƒ, or
grounded, if and only if s = ƒ(s).

Transformation functions transform strings to grounded strings.

3.1.1 Specifying Transformation Functions

Transformation functions can be specified with user–supplied ASCII files. Here is an exam-
ple file.

<A> –> XY

This ASCII file represents a valid transformation function. It specifies that every occurrence
of <A> in the source string be converted to XY. For example, if s = abc<A>def<A>, then
ƒ(s) = abcXYdefXY. Note that all occurrences of <A> are transformed in a single invocation
of the transformation function, thus preserving grounding.

3

It is possible for for the ASCII file to be more complex. Here is another example file.

<A> –> XZ
 –> Y

If s = a<A>b, then ƒ(s) = aXYZbY, again preserving grounding.

We have introduced the ability for elements on the right of an arrow to appear as the token
for the left side of some other arrow in the same ASCII file. This allows for the possibility
of cyclical specifications. Here is an example of an ASCII file with a cyclical specification.

<A> –> XZ
 –> Y<C>
<C> –> <A>

Note the cycle encountered when attempting to transform s = x<A>y. The detection of such
cycles in an ASCII file is a simple matter. Those ASCII files that contain cycles are invalid
and cannot be used to specify a transformation function. The acyclic property of an ASCII
file is essential to insure the grounding property of the resulting transformation function.

3.1.2 Using Transformation Functions

Once the transformation function has been specified by a valid ASCII file it is ready for use.
Selected strings from the input from an EPICS tool should be processed by the transforma-
tion function. Because the transformation functions always result in grounded strings, this
process need only be done once.

3.2 Enumeration

The process of enumeration works with two elements, a finite tree and an enumeration list.
It is assumed that all tools in which enumeration is to be used can have its input represented
as a finite tree. Given a finite tree and an enumeration list, the enumeration process generates
a new finite tree that serves as input to the EPICS tool.

3.2.1 The Enumeration List

Here is the general structure of each element in an enumeration list,

id = enumeration set

where id is a unique enumeration id token and enumeration set is a non–empty finite set. As
a set, there is no order on the elements in the enumeration set and there are no duplicates.

3.2.2 The Enumeration Process

Given a finite tree and an enumeration list, the enumeration process entails performing a pre–
order traversal on the tree processing each node accordingly. Those nodes that do not have
any enumeration id tokens are left unchanged. The other nodes, those with at least one enu-
meration id token, must be expanded.

4

Each enumeration id token has an associated enumeration set. Expanding the node requires
taking the Cartesian product of all the associated enumeration sets and creating a new node
for each element in the Cartesian product. Each newly created node has effectively instan-
tiated each of the enumeration id tokens with an element from its enumeration set.

The entire subtree of the node being processed is replicated as subtrees of each of the newly
created nodes. For each new subtree rooted at the newly generated nodes, all enumeration
id tokens that appeared in the node being processed are replaced with the instantiated value
of their root.

The node being processed, and all its children, are removed from the tree and replaced by
all its newly created subtrees.

4 Example
We examine the methodology as it applies to two tools in EPICS, the database and the alarm
handler. String substitution is straightforward and is not covered in this example. This exam-
ple concentrates on the enumeration process over these two tools.

In this example we consider a magnet. We assume that it requires two database records to
control a magnet, r1 and r2, where r1 forward links to r2. We assume further that there are
two magnets per sector and two sectors per database.

4.1 Database

Here is the database.

r1m[m]s[s]
 FWD = r2m[m]s[s].VAL

r2m[m]s[s]

For purposes of enumeration, a database is considered a tree. A root node is artificially
constructed and called database. Each record of the database is a child of the root node.
Fields within a record represent the record’s children.

Here is the enumeration list that conforms to the assumptions in our example; two magnets
per sector and two sectors.

[s] –> {1, 2}
[m] –> {1, 2}

In processing the database tree with a pre–order traversal, the first node we encounter with
enumeration id tokens is the record r1m[m]s[s]. After expanding that record and all its chil-
dren we have the following database.

5

r1m1s1
 FWD = r2m1s1.VAL

r1m1s2
 FWD = r2m1s2.VAL

r1m2s1
 FWD = r2m2s1.VAL

r1m2s2
 FWD = r2m2s2.VAL

r2m[m]s[s]

Note that both enumeration id tokens [m] and [s] were fully expanded and that each instantia-
tion of [m] and [s] was appropriately propagated to each of the fields (children) of the record
(parent).

The enumeration process continues to the next node in the tree with an enumeration id token,
the record r2m[m]s[s]. Here is the database after expanding that node.

 r1m1s1
 FWD = r2m1s1.VAL

r1m1s2
 FWD = r2m1s2.VAL

r1m2s1
 FWD = r2m2s1.VAL

r1m2s2
 FWD = r2m2s2.VAL

r2m1s1
r2m1s2
r2m2s1
r2m2s2

The resulting database has eight records in it. This was generated from the source database,
having only two records, and the enumeration list.

4.2 Alarm Handler

Now consider generating an alarm configuration file for the alarm handler to monitor the
channels in our example database. In our example, we chose to group all the channels in a
single group called ALL as well as separating the channels by sector. In the following tree,
all leaves are channels and all other nodes are groups.

6

MAIN

ALL SECTORS

S[s]r1m[m]s[s] r2m[m]s[s]

r1m[m]s[s] r2m[m]s[s]

Using the same enumeration list we process this tree. Again, in a pre–order traversal, the
first node we encounter with enumeration id tokens is the channel r1[m]s[s]. We expand it
appropriately. Since it has no children, the expansion is straightforward. We proceed with
the traversal and encounter the channel r2m[m]s[s] and expand it appropriately. Here is the
tree after both expansions.

MAIN

ALL SECTORS

S[s]r1m1s1 r2m1s1

r1m[m]s[s] r2m[m]s[s]

r1m1s2
r1m2s1
r1m2s2

r2m1s2
r2m2s1
r2m2s2

Although not clearly evident in the above diagram, the node ALL now has eight children.
Each of the original single leaf nodes representing channels have been expanded to four leaf
nodes, each representing single channels.

The pre–order traversal continues and we encounter node S[s].

MAIN

ALL SECTORS

r1m1s1 r2m1s1

r1m[m]s1 r2m[m]s1

r1m1s2
r1m2s1
r1m2s2

r2m1s2
r2m2s1
r2m2s2

S1 S2

r1m[m]s2 r2m[m]s2

Note that in instantiating the token [s] in the leaf nodes, the token [m] was left unchanged.

7

The final steps of the enumeration process expands the token [m] in each of the leaf nodes.

MAIN

ALL SECTORS

r1m1s1 r2m1s1

r1m1s1 r2m1s1

r1m1s2
r1m2s1
r1m2s2

r2m1s2
r2m2s1
r2m2s2

S1 S2

r1m1s2 r2m1s2
r1m2s1 r2m2s1 r1m2s2 r2m2s2

Given the same base alarm configuration file, we could have easily transformed the tree into
one that monitors all the sectors by simply changing [s]’s enumeration set.

